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Abstract
The single-particle spectral-weight function of the ionic Hubbard model (IHM)
at half-filling shows an abrupt change of regime at a critical value of the
coupling constant (Hubbard U ). Specifically, this function jumps at the Fermi
points kF = ±π/2 from a two-peak to a four-peak structure accompanied
by a (non-vanishing) minimum of the single-particle charge gap. This jump
separates a weak-coupling regime, the band insulating phase, from a strong-
coupling regime which evolves gradually into the Mott–Hubbard phase. We
take advantage of this critical behaviour to model several quasi-one-dimensional
materials in terms of the IHM instead of the simpler one-band Hubbard
model. For instance, the two regimes are physically realized in the angle-
resolved photoelectron spectra of (TaSe4)2I, and the blue-bronze K0.3MoO3,
respectively.

1. Introduction

Quasi-one-dimensional (Q1D) systems have been the object of intense experimental and
theoretical activity over the last 20 years. They show highly anisotropic properties, with a
privileged direction of enhanced charge transport. Their interest lies in the hope that they can
be good candidates for the physical realization of non-Fermi liquid behaviour. This interest,
in low-D systems in general, has expanded very rapidly in recent years partly due to the
technological development of low-D artificial structures and nano-scale materials.

Above their Peierls temperature (or when doped away from half-filling), these Q1D
systems are conductors and display Luttinger liquid behaviour [1], i.e., the absence of quasi-
particle excitations in the Fermi liquid sense (a quasi-particle peak at the Fermi level) and
the excitation, instead, of decoupled collective modes of charge (holons) and spin (spinons)
character, a phenomenon usually known as spin–charge separation. The absence of a
Fermi edge has indeed been found in angle-resolved photoelectron spectroscopy (ARPES)
of (TaSe4)2I [2, 3], K0.3MoO3 [4], and the organic conductor TTF–TCNQ (tetrathiafulvalene–
tetracyanoquinodimethane)[5, 6]. For a good review, see [7]. Clear experimental signatures of
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spin–charge separation are, however, very scarce in Q1D conductors, with the notable exception
of TTF–TCNQ reported very recently [6]. All these compounds in their metallic state can be
modelled by the low-energy physics of the doped 1D single-band Hubbard Hamiltonian [6].
Alternatively, they have been analysed on the basis of the Luttinger model or the Luther–Emery
model (when a spin gap is expected). Some puzzles still remain unsolved [7].

Below their Peierls temperature, these Q1D compounds, as well as many others like
halogen-bridged transition-metal chains, conjugated polymers, and organic charge-transfer
salts, are usually insulating. In these systems, the competition between strong on-site
correlations and their kinetic energy gives rise to significant localization of their itinerant
electrons. This often leads to the stabilization of non-metallic ground states with or without
charge-density waves (CDWs). Thus (TaSe4)2I and the blue-bronze K0.3MoO3, for instance,
are CDW insulators [7], while the nearly ideal 1D CuO chains in SrCuO2 and Sr2CuO3 are
responsible for the insulating character of these charge-transfer insulators [8]. Signatures of
spin–charge separation have also been found in ARPES of SrCuO2 [9] and in the dielectric
response of Sr2CuO3 [10].

Most of these insulating systems can be conveniently described by the Emery model [11],
which is a generalized Hubbard Hamiltonian on a two-sublattice model, made of cations (say
Cu ions) and anions (say O ions), respectively. The on-site energy levels and repulsions (εd,
Udd) and (εp, Upp), for Cu d orbitals and O p orbitals, are coupled by nearest-neighbourhopping
of strength tdp and Coulomb repulsions Vdp. Its 1D version reads

H = εd

∑

is

ndis + Udd

∑

i

ndi↑ndi↓ + εp

∑

j s

np j s + Upp

∑

j

np j↑np j↓

+ tdp

∑

〈i j〉s
(d+

isp j s + hc) + Vdp

∑

〈i j〉
ndi np j (1)

where d+
is creates an electron (hole) in a d orbital at site i with spin s, i running over all the Cu

sites. Similarly p j s annihilates an electron (hole) in a p orbital at site j and spin s, j running
over all the O sites. As usual, 〈i j〉 means summation over nearest neighbours, ns = c+

s cs and
ni = ni↑ + ni↓ denotes the charge at the i th site.

At first sight the Cu–O repulsion seems essential since a large charge-transfer is expected.
However, Vdp is usually much smaller than the on-site repulsions and, furthermore, this term
gives rise to new physics only in the event of exciton formation. Hence, if we are not especially
interested in these processes, Vdp can be safely ignored. One is then left with a charge-
transfer model Hamiltonian which can still give a reasonable description of some of these
compounds [12, 13], e.g., SrCuO2 and Sr2CuO3 [7]. If we are now willing to reduce the
number of parameters by putting (somewhat arbitrarily) Upp = Udd, then the so-called ionic
Hubbard model (IHM) follows. It can be written simply as

H = −t
∑

〈i j〉s
c+

isc js +
�

2

∑

is

(−1)inis + U
∑

i

ni↑ni↓ (2)

where � is the on-site energy difference between even and odd sites, usually known as the
charge-transfer energy.

Although, again at first sight, this Hamiltonian does not describe accurately any specific
system (since quite generally Upp < Udd), it provides a simple, minimal, model where the
interplay among covalency (t), ionicity (�) and correlation (U ) gives rise to a rich phase
diagram within which different 1D compounds can be placed. Originally proposed by Nagaosa
and Takimoto [14] as a model for ferroelectric perovskites and later by Egami et al [15] to
explain the neutral–ionic transition in some organic crystals, this Hamiltonian is ideal for
studying the nature of quantum phase transitions in 1D electron systems. On general grounds,
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one expects a transition from an ionic, weakly correlated band insulator (BI) phase to a neutral,
strongly correlated Mott insulator (MI) phase as U increases. An important and controversial
issue is the nature of this transition as well as whether two critical points rather than one
separate both phases. Depending on the method of calculation used, either one [16–19] or
two [20–23] critical points have been predicted, so the controversy cannot be considered as
closed yet.

In this paper we remain outside the above controversy, touching upon it only incidentally.
Instead we shall concentrate on the single-particle spectral-weight function (SWF) A(k, E) of
this model at half-filling, which can be compared with ARPES of several insulating materials.
Somewhat surprisingly, this important quantity for the description of the excitations of an
electron system has not received any attention yet in connection with the IHM, all the effort
having being concentrated on the nature of the quantum phase transition. A(k, E) will be
calculated using the cluster perturbation theory (CPT) approach originally due to Gros and
Valenti [24] and more recently reformulated by Senechal et al [25]. This is briefly described
in section 2. Section 3 describes our results for the critical behaviour of A(k, E) as a function
of the Hubbard U , followed by a discussion in section 4 showing that (TaSe4)2I and K0.3MoO3

are good qualitative examples of the two phases involved in this critical behaviour. Finally,
section 5 closes the paper with some concluding remarks.

2. Cluster perturbation theory

Since this method has been discussed at length in [24] and [25], we simply summarize it
very briefly here. In CPT one divides the lattice (here the chain) into a number of equal
clusters. The single-particle Green’s function (GF) on these clusters is then found by exact
diagonalization with open boundary conditions. We have made use of a variant of the Lanczos
algorithm specifically designed to calculate dynamic quantities [26]. The approximation now
consists in neglecting the intercluster self-energy, so that the GFs of neighbouring clusters
are connected by hopping terms only. Periodic boundary conditions are then imposed on the
whole chain, i.e., between the extreme clusters. To be specific, let mi denote the site m of the
cluster i . The exact Green’s function Gmi,n j , of the whole chain is given by the well-known
Dyson’s equation in matrix form (G−1

0 − �)G = I , in terms of the non-interacting GF and
the exact �. In CPT this exact � is approximated by �mi,n j = δi j�

C
mn , where �C is the

cluster self-energy matrix. This was, in fact, the original argument of Gros and Valenti [24].
The approximation is applicable to any lattice in any dimension. It can be understood as a
lowest-order contribution to a systematic perturbation expansion in powers of the intercluster
hopping [25, 27]. It turns out, on the other hand, that CPT is a limiting case of a more general
variational cluster approach [28].

In this paper we concentrate on the SWF A(k, E), given as usual by

A(k, E) = − 1

π
Im G(k, E + iη) (3)

where G(k, E) is the Fourier transform (FT) of the single-particle retarded GF and η a positive
infinitesimal. This FT must be calculated with some care since Gmn(i − j) is periodic in i j
but not in mn due to the open boundary conditions used in the clusters. The correct formula
is [25, 27]

G(k, E) = 1

N

∑

mn

e−ik(m−n)Gmn(Nk, E) (4)

where N is the number of sites in a cluster and Gmn(k) the FT of Gmn(i − j).
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Figure 1. Single-particle spectral-weight function A(k, E) for the half-filled ionic Hubbard model
at the Fermi points k = ±π/2. From top to bottom, U = 1, 2.0775 (just below Uc), 2.078 (just
above Uc), and 3. We have taken t = 1 and � = 1. All the energies are given in eV. The vertical
thin line indicates the chemical potential.

In all our calculations we take a chain of 96 sites of two kinds with levels at ±�/2, at half-
filling, and take t = 1 eV and � = 1 eV. Clusters of 8 sites have been adopted after checking
that increasing the size of the starting cluster up to 12 sites does not change substantially the
results for the whole chain. Some fine structure simply disappears with increasing cluster size
(size effects), but the essential features remain almost unaltered.

3. The spectral weight function

Figure 1 shows A(k, E) at the Fermi points kF = ±π/2 for increasing U . A broadening
η = 0.05 eV has been given to the otherwise delta functions. The thin vertical line indicates
the chemical potential (E −µ = 0). The two peaks closest to the chemical potential (middle of
the gap) delimit the single-particle gap, usually defined by the energy difference between the
lowest unoccupied and the highest occupied single particle levels. Two regimes are observed
in the low-energy region: for small U , a two-peak structure is seen close to the chemical
potential which persists, while the two peaks approach each other, up to U1 = 2.0775 eV.
Abruptly, at U2 = 2.0780 eV, a four-peak structure appears, with smaller peaks. This jump
can be best understood in terms of the separated-atoms limit and simply signals the ionic-
to-neutral transition (recall that the non-interacting dispersion relation vanishes at the Fermi
points). In this limit, the ground state jumps from the ionic configuration, with the odd
sites doubly occupied and the even sites empty, to the neutral configuration where both even
and odd sites are half-occupied. Correspondingly, the one-electron Green’s function two-
peak to four-peak jump at both the even and odd sites, thus yielding the required two–four
peak jump. As U further increases, the SWF tends asymptotically to a Mott–Hubbard
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Figure 2. Spectral-weight function A(k, E) of the half-filled IHM for U = 2.0775 eV, just
below Uc. An offset has been given to the plots for different k s along the large Brillouin zone
(−π � k < π) in order to avoid superposition. The figures along the left vertical axis count the
number of k s starting from −π . On the right vertical axis, some especial k s are indicated. The
intersections of the vertical thin with the SWF at kF = ±π/2 mark the middle of the gap.

scenario without any further signature of abrupt change. The single-particle (charge) gap,
after passing through a minimum, increases again. It never vanishes, in agreement with recent
findings [19, 23].

To check the changes that occurred at k �= ±π/2, figures 2 and 3 display A(k, E) for
the values just quoted U1 = 2.0775 eV and U2 = 2.0780 eV, just below and above some
intermediate critical U , Uc, along the large Brillouin zone (BZ), −π � k � π (in the extended
zone scheme). An offset has been provided to the different plots to avoid superposition. The
figures along the left vertical axis number the k s starting from k = −π (only a selected set of
32 k s have been shown for clarity). As in figure 1, the thin vertical line indicates the chemical
potential. The intersections of this line with the SWF at kF = ±π/2 mark the middle of the
gap, which is delimited then by the two adjacent peaks. Figure 2 shows a cosine-like band
cut into two pieces (follow the vertical line) by a gap at the Fermi points (cf with the second
panel in figure 1). Two shadow bands covering only part of the BZ are clearly visible around
k = 0 (occupied) and k = π (empty). In figure 3, on the other hand, the cosine-like band is
now cut by a wider gap delimited by the outer peaks of figure 1, third panel. The inner peaks
are continued by two almost non-dispersive, flat bands covering only a small portion of the
BZ around kF. The smaller gap delimited by the inner peaks, i.e., between the flat bands, is
the real gap shown by the SWF, continuation of the gap seen in the first regime. In contrast,
the Hubbard-like band edges define a wider gap. The system can also be described as having
a Hubbard gap with two weakly dispersive, impurity-like peaks close to the middle of the gap,
somewhat reminiscent of the lattice-Anderson model. As U increases further, the inner gap
increases from its minimum value; the flat bands repel each other and finally merge with the
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Figure 3. Same as figure 2, but for U = 2.0780 eV just above Uc.

Hubbard bands. The system evolves asymptotically onto the Mott–Hubbard phase (infinite U
limit). The shadow bands around k = 0 and π have now almost disappeared.

The band structures in figures 2 and 3 can be alternatively understood by considering the
IHM as a two-component system made up of an electron-doped (the odd sites) and a hole-doped
(the even sites) system, both slightly away from half-filling. Then the band structure around
k = 0 is very reminiscent of the hole-doped Hubbard model (a spinon and a holon band).
Likewise, the band structure around k = π resembles that of the electron-doped Hubbard
model, with the same interpretation. Although, as already shown, the physics in the gap region
is essentially controlled by the separated atoms limit, a range of k s around kF also contribute
to the DOS (not shown), so that the relative strength of the inner and outer peaks need not be
that derived from kF alone in figure 1.

Summarizing, the two-band structure for U < Uc is continuously connected to the
insulator bands at U = 0. This is the band insulator (BI) regime. For U > Uc, however,
we have a strong-coupling regime, more Hubbard-like, which evolves into the Mott–Hubbard
regime at large U . This change of regime at Uc is in fact the only signature of a quantum
phase transition detected by the single-particle GF. All the E-integrated quantities like the
ground-state energy, the ionicity, the double occupancy and the bond charge are continuous
functions of U , even at Uc, and thus do not provide any hint of a quantum phase transition.
This is, for instance, the case of the bond charge, ni j , which is continuous across any single
site and therefore tell us nothing about a spontaneous dimerization. To settle this issue one
must turn to bond–bond correlations, which have been extensively studied recently by several
authors [16, 18–23]. These correlations tell us that our second phase is indeed spontaneously
dimerized and therefore the detected transition may correspond to the first critical point of
the well-known two-point scenario. The second critical point, associated with the spin gap,
cannot be detected by the SWF in a direct way. We wish to stress here that our results are
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not in contradiction with those obtained by other authors regarding the nature of quantum
phase transitions in the IHM. Simply, quantities like excitation gaps, spin gaps, and bond–
bond correlations, are not directly accessible to the single-particle GF. Our results rather add
information about a quantum phase transition associated with the single-particle gap minimum.

4. Modelling Q1D insulators

The development of high-resolution ARPES in the 1990s revived the interest in Q1D materials.
This effort first concentrated on inorganic chain-like materials, like (TaSe4)2I and K0.3MoO3,
where well characterized, high-quality single crystals were easier to prepare than organic
crystals. A further driving force for this effort was to study the opening of large Peierls gaps,
which made CDW materials ideally suited for ARPES studies. We concentrate here on these
materials and will not pay any further attention to either organic crystals or Mott insulators,
also important types of materials.

(TaSe4)2I has a chain-like structure leading to a metal–insulator transition to an
incommensurate, almost tetramerized, CDW at a Peierls transition temperature Tp = 263 K ,
with an estimated optical or transport gap of 0.25–0.3 eV [29]. The ARPES spectra exhibit
a single feature with band-like dispersion throughout the 1D BZ (the �X direction) and a
complex line shape [2, 3, 30]. The band shows a minimum at �, surrounded by maxima
near the zone boundaries, but it never comes closer than 0.4 eV to the chemical potential, in
contrast with band structure calculations [31] which predict a double crossing of the two 1D,
nearly degenerate, Ta 5d conduction bands. The gap persists, essentially unchanged, for higher
temperatures well into the normal, metallic phase.

Like (TaSe4)2I, the molybdenum blue-bronze K0.3MoO3 exhibits 1D electronic properties
and a Peierls transition at 180 K to an insulating CDW state with an energy gap of about 100–
150 meV. The ARPES data show two spectral features, one dispersing weakly and the other
strongly along �X (parallel to the chains direction). Both bands have a minimum at � and a
maximum at X [4, 32, 33]. Neither of them comes closer than 0.18 eV to the chemical potential
anywhere in the BZ, in striking contrast to tight-binding calculations [34] which predict two
nearly degenerate bands crossing the Fermi level. Any of these calculated bands could fit
the shallow experimental band, closer to the chemical potential, but not the second, strongly
dispersing band with a bandwidth well above 1 eV. The gap also remains visible at higher
temperatures.

The above features, of course, make useless any explanation in terms of the standard Fermi
liquid model of metals and semiconductors. Moreover, it seems hard to provide a consistent
explanation of them within the framework of any of the simplest, strongly interacting models.
For instance, the absence of a Fermi edge in the metallic phase calls for the Luttinger liquid
model [1], but the simultaneous presence of a real gap in the low-temperature phase of the
above two materials rather hints to the Luther–Emery model [35], where charge transport is
compatible with a spin-gapped mode. To attain the required gap sizes, however, one must go
to rather unrealistic values of the interaction parameters. These gaps are better described by
the fluctuating Peierls insulator model [36], but this model cannot explain the persistence of
the gaps above the Peierls temperature.

It is just here where the IHM is more helpful and constitutes a better starting point than,
say, the single-band Hubbard model (HM), or any of the above models (which describe some
of the low-energy properties of the HM). The IHM is nothing more than a HM generalized for
a bipartite lattice with two kinds of sites (anions and cations) with an energy-level difference
� between them (cf equation (2)). This extra degree of freedom with respect to the HM lends
sufficient flexibility to the model for an almost independent determination of both the gap and
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Figure 4. Spectral-weight function for (in eV) t = 0.5, � = 1 and U = 0.5.

other band features. By so doing, the gap is now both of band and many-body origin. As
suggested in the introductory section, the interplay among t , U and � yields a rich phase
diagram within which many Q1D materials can be placed.

The IHM provides a simple explanation of the difference in band structure observed
between (TaSe4)2I and K0.3MoO3 through the critical behaviour of the single-particle SWF.
Thus the first material, with a single band and a large gap, belongs to the BI regime (U < Uc)

with U lying far below Uc (figure 4). The second material, instead, with two bands and a
smaller gap (0.18 eV), must be placed in the strong-coupling (U > Uc) regime with U rather
close to Uc (figure 5). The figure captions give the parameters used in our calculations. Since
both the (TaSe4)2I band and the wide band of the blue-bronze have a bandwidth of about 1 eV,
we have taken t = 0.5 eV. As one can see in figure 5, the flat band described in section 3
(figure 3) simulates the weakly dispersing band of K0.3MoO3. However, it is unclear how this
band could proceed all the way from the Fermi surface (X) down to the � point.

In any case, an interpretation of the spectral properties of Q1D materials should take into
account the discrepancy between the large observed gaps in ARPES and the much smaller
gaps related to transport and optical properties. A recent work [37] suggests that the polaronic
effects associated to strong electron–phonon interactions may account for these discrepancies,
as well as for the asymmetric complex lineshapes of the above materials.

5. Conclusions

Using the cluster perturbation theory approach we have calculated the single-particle spectral-
weight function A(k, E) of the ionic 1D Hubbard model at half-filling. A change of regime
is found at a critical value of U , Uc(t,�), which depends on both the hopping amplitude t
and the on-site energy difference, �, between even and odd sites. As U increases, A(k, E)

jumps from a two-peak structure to a four-peak one at the Fermi points kF = ±π/2. As one
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Figure 5. The same as figure 4, but for U = 2.1 eV.

moves away from kF, two semiconducting bands are found for U < Uc, separated by a gap
which decreases from its initial value � (at U = 0) down to a small, but non-vanishing, value
at Uc. This gap is always delimited by the two-peak structure at kF. For U > Uc, instead, two
flat, almost-non-dispersive bands appear around the Fermi points inside the gap between the
two Hubbard-like bands. As U increases further, the flat bands approach the Hubbard bands,
finally merging into them. Asymptotically, a Mott–Hubbard phase is approached gradually
without any signature of abrupt change in A(k, E) along this region of large U .

The two CDW insulators (TaSe4)2I and K0.3MoO3 are good examples of qualitative
behaviour according with these regimes. They can be placed, respectively, within the first, BI
regime (a single occupied band) and the second, strong-coupling regime (two occupied bands)
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